Understanding D-Ribose and Mitochondrial Function (2024)

1. Martin-Fernandez B, Gredilla R. Mitochondria and oxidative stress in heart aging. Age (Dordr) 2016;38:225–238. doi:10.1007/s11357-016-9933-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol. 2010;5:297–348. doi:10.1146/annurev.pathol.4.110807.092314. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Schapira AH. Mitochondrial disease. Lancet. 2006;368:70–82. doi:10.1016/S0140-6736(06)68970-8. [PubMed] [CrossRef] [Google Scholar]

4. Nicolson GL. Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements. Integr Med (Encinitas) 2014;13:35–43. [PMC free article] [PubMed] [Google Scholar]

5. Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res. 2016;118:1593–1611. doi:10.1161/CIRCRESAHA.116.307505. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct. 2011;6:35. doi:10.1186/1745-6150-6-35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105–116. doi:10.1016/j.mito.2016.07.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106:135–159. doi:10.1093/bmb/ldt017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Pauly DF, Pepine CJ. D-Ribose as a supplement for cardiac energy metabolism. J Cardiovasc Pharmacol Ther. 2000;5:249–258. doi:10.1054/JCPT.2000.18011. [PubMed] [CrossRef] [Google Scholar]

10. Herrick J, St Cyr J. Ribose in the heart. J Diet Suppl. 2008;5:213–217. doi:10.1080/19390210802332752. [PubMed] [CrossRef] [Google Scholar]

11. Leites EP, Morais VA. Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochem Biophys Res Commun. 2017 doi:10.1016/j.bbrc.2017.06.096. [PubMed] [CrossRef] [Google Scholar]

12. Ettema TJ. Evolution: Mitochondria in the second act. Nature. 2016;531:39–40. doi:10.1038/nature16876. [PubMed] [CrossRef] [Google Scholar]

13. Agrawal A, Mabalirajan U. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Lung Cell Mol Physiol. 2016;310:L103–113. doi:10.1152/ajplung.00320.2015. [PubMed] [CrossRef] [Google Scholar]

14. Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim Biophys Acta. 2015;1853:2784–2790. doi:10.1016/j.bbamcr.2015.03.013. [PubMed] [CrossRef] [Google Scholar]

15. Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18:488–498. doi:10.1038/ni.3704. [PubMed] [CrossRef] [Google Scholar]

16. Kim SJ, Xiao J, Wan J, Cohen P, Yen K. Mitochondrially derived peptides as novel regulators of metabolism. J Physiol. 2017;595:6613–6621. doi:10.1113/JP274472. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. de Almeida A, Ribeiro TP, de Medeiros IA. Aging: Molecular Pathways and Implications on the Cardiovascular System. Oxid Med Cell Longev. 2017;2017:7941563. doi:10.1155/2017/7941563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Feng D, Liu L, Zhu Y, Chen Q. Molecular signaling toward mitophagy and its physiological significance. Exp Cell Res. 2013;319:1697–1705. doi:10.1016/j.yexcr.2013.03.034. [PubMed] [CrossRef] [Google Scholar]

19. Polster BM, Carri MT, Beart PM. Mitochondria in the nervous system: From health to disease, Part I. Neurochem Int. 2017;109:1–4. doi:10.1016/j.neuint.2017.09.006. [PubMed] [CrossRef] [Google Scholar]

20. Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17:491–506. doi:10.1016/j.cmet.2013.03.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Gomes LC, Scorrano L. Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta. 2013;1833:205–212. doi:10.1016/j.bbamcr.2012.02.012. [PubMed] [CrossRef] [Google Scholar]

22. Tamura Y, Sesaki H, Endo T. Phospholipid transport via mitochondria. Traffic. 2014;15:933–945. doi:10.1111/tra.12188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Zhang Q, Tamura Y, Roy M, Adachi Y, Iijima M, Sesaki H. Biosynthesis and roles of phospholipids in mitochondrial fusion, division and mitophagy. Cell Mol Life Sci. 2014;71:3767–3778. doi:10.1007/s00018-014-1648-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 2017;391:42–53. doi:10.1016/j.tox.2017.07.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Wasilewski M, Chojnacka K, Chacinska A. Protein trafficking at the crossroads to mitochondria. Biochim Biophys Acta. 2017;1864:125–137. doi:10.1016/j.bbamcr.2016.10.019. [PubMed] [CrossRef] [Google Scholar]

26. Neupert W. A perspective on transport of proteins into mitochondria: a myriad of open questions. J Mol Biol. 2015;427:1135–1158. doi:10.1016/j.jmb.2015.02.001. [PubMed] [CrossRef] [Google Scholar]

27. Martinez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, et al. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions. Mol Cell. 2016;61:199–209. doi:10.1016/j.molcel.2015.12.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Donnelly RP, Finlay DK. Glucose, glycolysis and lymphocyte responses. Mol Immunol. 2015;68:513–519. doi:10.1016/j.molimm.2015.07.034. [PubMed] [CrossRef] [Google Scholar]

29. Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, Ogrodzinski M, Hecht V, et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell. 2015;57:95–107. doi:10.1016/j.molcel.2014.10.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell. 2014;158:84–97. doi:10.1016/j.cell.2014.04.046. [PubMed] [CrossRef] [Google Scholar]

31. Rieger B, Junge W, Busch KB. Lateral pH gradient between OXPHOS complex IV and F(0)F(1) ATP-synthase in folded mitochondrial membranes. Nat Commun. 2014;5:3103. doi:10.1038/ncomms4103. [PubMed] [CrossRef] [Google Scholar]

32. Kuhlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13:89. doi:10.1186/s12915-015-0201-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Matta CF, Massa L. Energy Equivalence of Information in the Mitochondrion and the Thermodynamic Efficiency of ATP Synthase. Biochemistry. 2015;54:5376–5378. doi:10.1021/acs.biochem.5b00834. [PubMed] [CrossRef] [Google Scholar]

34. Ghosh K, Debasis K, Purnendu R. Benzimidazolium-based simple host for fluorometric sensing of H2PO4, F–, PO43- and AMP under different conditions. Tetrahedron Letters. 2011;52:5098–5103. doi:10.1016/j.tetlet.2011.07.110. [CrossRef] [Google Scholar]

35. Vyas NK, Vyas MN, Quiocho FA. Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose. Structural and Functional Similarity. J Biol Chem. 1991;266:5226–5237. [PubMed] [Google Scholar]

36. Wamelink MM, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentosephosphate pathway: a review. J Inherit Metab Dis. 2008;31:703–717. doi:10.1007/s10545-008-1015-6. [PubMed] [CrossRef] [Google Scholar]

37. Tanuma S, Sato A, Oyama T, Yoshimori A, Abe H, Uchiumi F. New Insights into the Roles of NAD+ -Poly(ADP-ribose) Metabolism and Poly(ADP-ribose) Glycohydrolase. Curr Protein Pept Sci. 2016;17:668–682. [PubMed] [Google Scholar]

38. Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. 2015;12:1091–1097. doi:10.1038/nmeth.3584. [PubMed] [CrossRef] [Google Scholar]

39. Frenguelli BG. The Purine Salvage Pathway and the Restoration of Cerebral ATP: Implications for Brain Slice Physiology and Brain Injury. Neurochem Res. 2017 doi:10.1007/s11064-017-2386-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Bayram M, St Cyr JA, Abraham WT. D-ribose aids heart failure patients with preserved ejection fraction and diastolic dysfunction: a pilot study. Ther Adv Cardiovasc Dis. 2015;9:56–65. doi:10.1177/1753944715572752. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Jones K, Probst Y. Role of dietary modification in alleviating chronic fatigue syndrome symptoms: a systematic review. Aust N Z J Public Health. 2017;41:338–344. doi:10.1111/1753-6405.12670. [PubMed] [CrossRef] [Google Scholar]

42. Thompson J, Neutel J, Homer K, Tempero K, Shah A, Khankari R. Evaluation of D-ribose pharmaco*kinetics, dose proportionality, food effect, and pharmacodynamics after oral solution administration in healthy male and female subjects. J Clin Pharmacol. 2014;54:546–554. doi:10.1002/jcph.241. [PubMed] [CrossRef] [Google Scholar]

43. St Cyr JA, Bianco RW, Schneider JR, Mahoney JR, Jr, Tveter K, Einzig S, Foker JE. Enhanced high energy phosphate recovery with ribose infusion after global myocardial ischemia in a canine model. J Surg Res. 1989;46:157–162. [PubMed] [Google Scholar]

44. Pliml W, von Arnim T, Stablein A, Hofmann H, Zimmer HG, Erdmann E. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet. 1992;340:507–510. [PubMed] [Google Scholar]

45. Wagner DR, Gresser U, Kamilli I, Gross M, Zollner N. Effects of oral ribose on muscle metabolism during bicycle ergometer in patients with AMP-deaminase-deficiency. Adv Exp Med Biol. 1991;309B:383–385. [PubMed] [Google Scholar]

46. Teitelbaum JE, Johnson C, St Cyr J. The use of D-ribosein chronic fatigue syndrome and fibromyalgia: a pilot study. J Altern Complement Med. 2006;12:857–862. doi:10.1089/acm.2006.12.857. [PubMed] [CrossRef] [Google Scholar]

47. Seifert J, Frelich A, Shecterle L, St Cyr J. Assessment of Hematological and Biochemical parameters with extended D-Ribose ingestion. J Int Soc Sports Nutr. 2008;5:13. doi:10.1186/1550-2783-5-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Pliml W, von Arnim T, Hammer C. Effects of therapeutic ribose levels on human lymphocyte proliferation in vitro. Clin Investig. 1993;71:770–773. [PubMed] [Google Scholar]

Understanding D-Ribose and Mitochondrial Function (2024)
Top Articles
Latest Posts
Article information

Author: Stevie Stamm

Last Updated:

Views: 5861

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Stevie Stamm

Birthday: 1996-06-22

Address: Apt. 419 4200 Sipes Estate, East Delmerview, WY 05617

Phone: +342332224300

Job: Future Advertising Analyst

Hobby: Leather crafting, Puzzles, Leather crafting, scrapbook, Urban exploration, Cabaret, Skateboarding

Introduction: My name is Stevie Stamm, I am a colorful, sparkling, splendid, vast, open, hilarious, tender person who loves writing and wants to share my knowledge and understanding with you.